HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Laboratory of Information Processing Science

Mikko Reinikainen

A Framework for Static Program Analysis

Master’s Thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Technology.

Otaniemi, 15h December 2003

Supervisor: Prof. Eljas Soisalon-Soininen
Instructor: ~ Vesa Hirvisalo, Lic.Sc.(Tech.)

HELSINKI UNIVERSITY ABSTRACT OF THE
OF TECHNOLOGY MASTER’S THESIS

Author: Mikko Reinikainen

Title of the thesis: A Framework for Static Program Analysis

Date: 15h December 2003 Number of pages: 60
Department: Computer Science and Engineering

Professorship: T-106 Software Technology

Supervisor: Prof. Eljas Soisalon-Soininen

Instructor: Vesa Hirvisalo, Lic.Sc.(Tech.)

Our environment is full of embedded systems that interact with their surroundings
in real time. Static program analysis is one way to evaluate timing behavior of
real-time systems. Several tools have been developed for static program analysis,
but most existing tools are still under development. There is a demand for better

tools that could be used in the development and verification of real-time systems.

Creating a complete analysis tool from scratch is laborious and needs to be fa-
cilitated. This thesis proposes a framework for static program analysis. The
framework solves typical problems encountered when creating static program an-
alyzers. A prototype implementation of the framework is also presented. The
prototype implementation can be used to create static program analyzers in the
Java programming language. Three applications were successfully built on the

prototype implementation.

The framework is modular and contains well-defined interfaces. It is possible
to extend the framework. The prototype implementation provides most of the
basic functionality needed in a static program analyzer. The solution focuses on
performance evaluation, but is general enough to be used in other fields of static

program analysis as well.

Keywords: static analysis, program analysis, software, performance

i

TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA

Tekiji: Mikko Reinikainen

Ty6n nimi: Tyokalurunko staattiseen ohjelma-analyysiin
Paivamaira: 15. joulukuuta 2003 Sivuja: 60
Osasto: Tietotekniikka

Professuuri: T-106 Ohjelmistotekniikka

Ty6n valvoja: Prof. Eljas Soisalon-Soininen

Ty6n ohjaaja: TkL Vesa Hirvisalo

Ympéiristomme on tdynna sulautettuja jirjestelmié, jotka vuorovaikuttavat ym-
paristonsad kanssa reaaliajassa. Staattinen ohjelma-analyysi on yksi tapa reaali-
aikajirjestelmien aikakiyttdytymisen arviointiin. Staattiseen ohjelma-analyysiin
on kehitetty useita tyokaluja, mutta useimmat nykyiset tyokalut ovat vasta ke-
hitteilld. On tarve paremmille tyokaluille, joita voitaisiin kiyttaé reaaliaikajérjes-

telmien kehityksessé ja oikeaksitodistamisessa.

Kokonaisen analyysityokalun luominen tyhjésté on tyolasta ja sitd tdytyy helpot-
taa. Téssd diplomityossd esitetddn tyokalurunko staattiseen ohjelma-analyysiin.
Tyokalurunko ratkaisee tyypillisid ongelmia, joita kohdataan staattisia ohjelma-
analysaattoreita luotaessa. Tyossd esitetddn myos tyokalurungon prototyyppi-
toteutus, jota voidaan kiyttdd staattisten ohjelma-analysaattoreiden luomiseen
Java-ohjelmointikielelld. Prototyyppitoteutuksen péille rakennettiin onnistunees-

ti kolme sovellusta.

Tydkalurunko on modulaarinen ja sisiltia selkeédt rajapinnat. Tyokalurungon laa-
jentaminen on mahdollista. Prototyyppitoteutus tarjoaa suurimman osan perus-
toiminnoista, joita tarvitaan staattisessa ohjelma-analysaattorissa. Ratkaisu kes-
kittyy suorituskyvyn arviointiin, mutta on riittavin yleinen koskemaan muitakin

staattisen ohjelma-analyysin osa-alueita.

Avainsanat: staattinen analyysi, ohjelma-analyysi, ohjelmistot, suorituskyky

il

Contents

1 Introduction
1.1 Problem
1.2 Solution
1.3 Thesis Outline.

2 Background
2.1 Performance Evaluation
2.2 Real-Time and Embedded Systems
2.3 Modern Hardware
2.4 Static Program Analysis
2.5 Types of Static Program Analyses
2.6 Execution Time Analysis
2.7 Program Representations
2.8 Static Analysis in Compilers
2.9 Related Worko Lo

3 A Framework for Static Program Analysis
3.1 Design Principles L.
3.2 Modules of the Framework

3.3 Conclusions s

4 Prototype Implementation: JSPAF
4.1 Architecture e

4.2 Conclusions s,

v

12
14
18
21
24
26

29
29
30
35

CONTENTS

5 Practical experience 43
5.1 Liveness 43
5.2 Simple Machineo 45
5.3 BasicBlock Lo 48
5.4 Pipeline Timing Analysis Tool 20
5.5 Conclusions 50

6 Conclusions 51
6.1 Results. o1
6.2 Future Work 52

Foreword

This thesis was made as part of the PERF project at the Laboratory of
Information Processing Science of Helsinki University of Technology. The

project was funded by the Academy of Finland under the grant 51509.

I would like to thank manager of the project, Vesa Hirvisalo, for providing
the opportunity to learn great deal about scientific research and to make this

thesis under competent instruction.
I thank Professor Eljas Soisalon-Soininen for supervising my thesis.

I thank Juha Tukkinen for having numerous conversations about my thesis,

and for keeping me company at the office.

Finally, I want to thank my wife Mari and daughters Elli and Emma for

being the most important thing in my life. You gave me wonderful support.

Otaniemi, 2nd December 2003

Mikko Reinikainen

vi

Chapter 1

Introduction

Our environment is increasingly being filled with appliances that contain
processors and software. Modern mobile phones, vehicles, toys, and house-
hold appliances are controlled by computer programs that run in a processor

embedded within the appliance.

Most embedded systems interact with their surroundings in real-time [15].
Timing of this interaction is critical. For example, the anti-lock brake system
(ABS) of a car must work exactly at the right time, or it may cause damage

or endanger human lives.

The timing of programs can be evaluated by static program analysis. This
technique extracts knowledge of the run time behavior of a program without
executing the program. Static analysis of modern systems has been actively

researched in the latest decade (for a review, see, e.g., Ermedahl [17]).

Several tools have been developed for static program analysis, but most ex-
isting tools are still under development. There is a demand for better tools,

that could be used in the design and verification of real-time systems.

CHAPTER 1. INTRODUCTION

1.1 Problem

The main problem addressed in this thesis is, how to create tools for static
program analysis. The main problem contains the following subproblems,

which need to be solved by the designer of a static analysis tool:

e inputting the program to be analyzed,

e representing the program in a format suitable for analysis,
e describing the target machine,

e analyzing the program,

e representing the results of the analysis, and

e outputting the results of the analysis.

Creating a complete analysis tool from scratch is laborious and needs to be
facilitated. A tool architecture should be retargetable to support new target
machines, and flezible to support adding new analyses [17]. An ad hoc tool

is difficult to develop further.

In this thesis, the problem is studied in the context of tools that evaluate
performance. The problem also exists when creating tools for other pur-
poses (e.g., compilers). However, issues that are not relevant to performance

evaluation tools are out of the scope of this thesis.

1.2 Solution

This thesis uses the constructive method. As a solution to the problem, this
thesis proposes a framework for static program analysis. The framework

contains six modules that each solve one of the subproblems stated in the

CHAPTER 1. INTRODUCTION

previous section. The architecture supports adding new input formats, target

machines, analyses, and output representations.

Also, a prototype tmplementation of the framework is presented. The pro-
totype implementation consists of Java [49] packages that implement the
modules of the framework. The prototype implementation can be used to

create static program analyzers in the Java programming language.

The solution focuses on performance evaluation, but is general enough to be

extended to other fields of static analysis.

Validity of the solution is shown by the constructive method: Three appli-
cations were built based on the prototype implementation. The applications
demonstrate the capability of adding a new analysis, describing a target ma-
chine, inputting the program to the analyzer, and outputting the results of
the analysis. Additionally, Tukkinen [53] has successfully created a tool that

was based on the prototype implementation.

1.3 Thesis Outline

The following chapter presents context and theoretical background for this
thesis. The chapter discusses performance evaluation of modern real-time

and embedded systems by static analysis.

The subsequent chapters present the contributions of this thesis. The main
contribution, a modular framework for static program analysis, is proposed
in Chapter 3. The prototype implementation of the framework is presented
in Chapter 4. The three applications built on the prototype implementation
are described in Chapter 5.

Finally, results of the work are summarized and evaluated in Chapter 6,

which also speculates on possible future work on the subject.

Chapter 2
Background

This chapter gives the contextual and theoretical background that is needed
in the rest of this thesis. The reader is first introduced with the principles
of performance evaluation. Then, performance is discussed in the light of
real-time and embedded systems. After that, modern hardware features that

affect performance are presented.

The background for static program analysis and different types of static pro-
gram analyses are presented. Special aspects of execution time analysis are
discussed. Representations that are suitable for program analysis are spec-
ified. Static analysis performed by compilers is discussed. Finally, related

work is presented.

2.1 Performance Evaluation

Performance of a software system is the ability of the system to cope with a
certain workload [26]. Coping with a workload means that the system fulfills

requirements specified for the system.

A software system is a combination of software and hardware. Components

CHAPTER 2. BACKGROUND

of the system are called resources. Resources can be divided into software
resources and hardware resources. Software resources may be, for example,
procedures, system calls, logical modules or whole programs. Hardware re-
sources include computational units, memories, input and output devices and

other peripherals.

The workload consists of the input of the system. The input can be, for ex-
ample, commands typed by the user or measurement data from a measuring

instrument. The execution time of a program often depends on the input.

Performance is a quality factor of the system. Performance of a system can
be engineered in advance, but it is not a feature that could easily be added on
afterwards. In some cases performance issues may be solved by making minor
changes to the system. However, improving the performance of a software

system may also require redesigning the whole system.

Analyzing the performance of a software system is called performance eval-
uation. Performance evaluation can utilize different techniques. Evaluation
can be based on different criteria, which are called metrics. Producing reli-
able results with any technique requires choosing a representative workload.
Choosing an unrepresentative workload can give false results on the perfor-

mance of a system [26].

Techniques for performance evaluation of a software system are classically
categorized into measurement, simulation and analytical modeling [26]. Each

technique has its virtues and weaknesses.

Measurement means directly observing the behavior of the software system.
This can be done, for example, by instrumenting the program code or by
using some hardware measurement instruments. Measurement can only re-
veal the behavior of the program with certain inputs. It cannot guarantee
the behavior on all possible executions. Also, the instrumentation itself may

affect performance of the system.

Both simulation and analytical modeling require a mathematical model of the

CHAPTER 2. BACKGROUND

execution
time

WCET
ACET)/\
BCET /\/

/I\ /I\ input >

best case worst case

Figure 2.1: Possible execution times of a program with different inputs

system. Besides software and hardware, the input of the system has to be
modeled. In simulation the behavior of the system is observed by executing

the model and in analytical modeling by analyzing the model.

Simulating or analyzing a complete model is often undecidable. Therefore,
an approximate model or an approximate analysis may be needed. This leads

to an inability to observe all properties of the system.

Criteria for performance evaluation include ezecution time, throughput, re-
source utilization, availability and reliability. The following contains defini-

tions of these metrics.

Execution time (also called response time or latency) tells how long it takes
to service a request. Worst case ezecution time (WCET) is the longest pos-
sible execution time of the system. Best case execution time (BCET) is the
shortest possible execution time of the system. Average case execution time
(ACET) is the average execution time of the system. An example of possible

execution times of a program is presented in Figure 2.1.

CHAPTER 2. BACKGROUND

2.2 Real-Time and Embedded Systems

In a real-time system, the correctness of computation depends not only on the
result, but on the time at which the result is produced. Execution times of
the system must meet given deadlines. If a real-time system contains multiple
concurrent tasks that use the same resources, they need to be scheduled. This
is usually done by a real-time operating system |32|. Real-time systems are

divided into hard real-time systems and soft real-time systems.

In hard real-time systems, producing results at a wrong time makes the
result useless. An example of a hard real-time system is the airbag in a car.
If during a crash the airbag does not deploy in time, it is useless. However,

if the airbag deploys too early, it can be fatal, too [47].

In soft real-time systems, missing a deadline reduces quality of the service,
but the system still provides a service. In a soft real-time system the average
case execution time of the system is most important. An example is a real-
time video player: If the system is not able to decode all of the input stream,
it might need to skip a few frames but the video would still be possible to

watch.

In real world, the division between hard and soft real-time systems is not
always clear. Some examples of hard and soft real-time systems are presented
in Figure 2.2. One must not make the assumption that real-time systems
should be fast. The significant property is, that timing of a real-time system

is predictable.

Usually only small part of the program code has real-time requirements [15].
Thus, it would be useful to be able to analyze only the timing-critical part

of the software.

Embedded systems are systems that are not primarily computers, but that
contain a built-in software system. Mobile phones, vehicles, automation sys-

tems, toys and household appliances that have a microprocessor are all em-

CHAPTER 2. BACKGROUND

Hard real-time Soft real-time

airbag of a car video player
anti-lock brake system (ABS) of a car | user interface
flight-control system of an aircraft telephone switch

medical equipment

elevator

Figure 2.2: Examples of hard and soft real-time systems

bedded systems. Many embedded systems need to fulfill real-time require-
ments. For example, all the hard real-time systems in Figure 2.2 are also

embedded systems.

Embedded systems are often built of very simple hardware. Thus, they have
limited hardware resources. This leads to other performance issues besides
timing. For example, the power consumption of an embedded system may

be critical to its use.

2.3 Modern Hardware

Caches, pipelines and other modern hardware features make static perfor-
mance analysis of a program difficult, because the execution time of a pro-
gram becomes sensitive to the execution history of the program. The speed
of memory accesses depends on the contents of the cache, and the cycle count

of a single instruction depends on the previously executed instructions.

The Performance Gap

In 1965 Gordon Moore made his famous observation that the number of tran-
sistors per integrated chip grows exponentially [36]. Today this observation

still holds true, and therefore the performance of new microprocessors has

CHAPTER 2. BACKGROUND

increased about 60 percent every year [55]. The speed of memories has also
been increasing exponentially, but the increase is much smaller, about 7 per-
cent per year. This has lead to a gap between the performance of processors

and memory.

Because of the gap, memory is becoming more and more a bottleneck in
software systems. Traditional performance metrics of a program (number of
executed lines, number of executed operations) are no longer as significant

as they used to be.

Modern hardware architectures have many features that try to diminish the
performance gap. These features include caches, pipelines, branch predic-
tion, delayed branching, data forwarding and out-of-order execution. These
features naturally have other purposes as well, such as overcoming the max-

imum clock frequency that limits the performance of the system.

Caches

Caches are fast memories that are smaller than the main memory [48|. There
can be several levels of caches between the main memory and the processor.
Instruction caches are used to store instructions of a program. Data caches
are used for data accessed by the program. A wunified cache contains both
instructions and data. Caches improve performance by exploiting temporal

and spatial locality.

Temporal locality means that a memory location is repeatedly accessed within
a short period of time. Contents of recently used memory locations are held
in the cache in hope of repeated accesses to them. For example, instructions
of a loop get loaded into the instruction cache on the first iteration of the

loop. On consecutive iterations the instructions will be found in the cache.

Spatial locality implies that memory locations close to each other are likely

to be accessed contemporaneously. For example, accessing the first byte of

CHAPTER 2. BACKGROUND

a character string usually implies that the rest of the string will soon be

accessed.

A cache hit means that the data requested is found in the cache and, there-
fore, can be quickly retrieved. A cache miss means that the data is not found

in the cache and a slower access to upper memory level is needed.

The cache consists of blocks of memory called cache lines (also called cache
blocks or cache slots). If a cache miss occurs, the whole memory block con-
taining the accessed memory location is loaded in the cache. This is done on
the assumption that other memory locations in that block might be accessed

in the near future.

Associativity of a cache defines which cache lines can be used to store a certain
memory block. In a fully associative cache a memory block can reside on any
cache line. In an A-way set associative cache each memory block can reside
on any of a set of A cache lines. In a direct-mapped cache one memory block
can reside on exactly one cache line. A cache with more associativity is more

flexible, but it is harder to implement.

Example 2.1 The Motorola ColdFire 5307 contains a unified 8 kilobyte
four-way set associative cache with 128 sets. Size of one cache line is 16 bytes.
The cache uses pseudo round robin replacement policy: if a cache miss occurs
and all four lines of a cache set contain valid data, the line indicated by a

two bit global replacement counter is replaced and the counter is incremented.
Layout of the ColdFire cache is illustrated in Figure 2.3. [18]

Pipelines

Pipelines improve performance by overlapping the execution of successive in-
structions [46]. Execution of an instruction is divided into separate steps that
are performed by pipeline stages. There can be one instruction performing

each step simultaneously.

10

CHAPTER 2. BACKGROUND

128 cache sets
r A N\

global
<t} |replacement
counter

4 lines / set

-
16 bytes / line

Figure 2.3: Layout of the cache of Motorola ColdFire 5307

123456 7 8 9 timeinclock cycles

Instruction fetch IF

Instruction decode | ID S é\stall
Execute stage EX

Memory access |MEM

Write register WR

Figure 2.4: Execution of instructions in a pipeline with five stages

A pipeline may stall as a result of a pipeline hazard. There are three kinds of
pipeline hazards. Structural hazards are caused by a conflict in the processor
hardware, data hazards are caused by data dependencies (e.g. a load-use
conflict), and control hazards are caused by changes in control flow (e.g. a

branch instruction).

Example 2.2 Fzecution of instructions in a simple pipeline with five stages
is illustrated in Figure 2.4. The second instruction (black) spends two cycles

in the execute stage, which causes the third instruction to stall one cycle.

Other Hardware Features

Superscalar erecution means that a processor has a pipeline that can exe-
cute multiple instructions in a one clock cycle [46]. OQut-of-order execution
means, that the processor can choose the order in which it executes the
instructions. Speculative execution means that the processor can execute in-

structions before they are known to be needed. In delayed branching the

11

CHAPTER 2. BACKGROUND

instruction sequentially after the branch instruction is executed before the
branch actually takes place. All these features make the timing behavior of
a program complicated, because there is no longer a sequential dependency

between adjacent instructions.

A processor with instruction prefetch fetches instructions from the memory
into a prefetch queue . When a branch, interrupt or a conditional instruc-
tion is executed, the prefetch may have fetched the wrong instruction and
the queue needs to be flushed. Branch prediction tries to guess the correct
branch after a conditional instruction, thereby reducing the risk of flushing
the prefetch queue. The prediction can be based on target address of the
branch, history of that jump (saved in a branch history table) or decoding of

the instruction.

Architectures that use wvirtual memory have a translation table that trans-
lates addresses of virtual pages to addresses of physical memory pages [20].
Every memory access needs to be translated from a virtual address to a phys-
ical address. Contents of the whole translation table do not fit in the fast
processor memory. Solution to this problem is translation look-aside buffer
(TLB), which is a small cache that contains recently accessed entries of the
translation table. Implementation and behavior of virtual memory affect the

performance of a program.

2.4 Static Program Analysis

Static program analysis means extracting knowledge of dynamic, i.e. run
time, behavior of a program without executing the program. Static program
analysis can be used in tools that evaluate performance of a program. Static

program analysis is also used in optimizing compilers (see Section 2.8) [3].

Because most of the interesting properties of programs are undecidable (not

computable), static analysis needs to make a conservative approzimation.

12

CHAPTER 2. BACKGROUND

Results of the analysis must be safe. Safeness means that the results can be
depended on. Results should also be as precise as possible. Precision of the

results indicates how close the approximated result is to the reality.

Since static performance analysis of modern hardware features is difficult,
many real-time systems use old and simple hardware without caches and
pipelines. These features may also simply be switched off in order to make
the system more predictable. An analysis technique that could take these
hardware features into account would allow for using more advanced hard-

ware in real-time systems.

Analysis of different programs is not equally difficult. Typical programs for
desktop computers perform many arithmetic operations, whereas software

for embedded systems performs more logical and bitwise operations [14].

One challenge in constructing a program analyzer is balancing the cost and
precision of the analysis. Producing safe but too coarse estimations might
be easy, but improving the accuracy may require an infeasible amount of

computation.

Approaches to Static Program Analysis

Static program analysis can be performed with several approaches. The

following presents the most important approaches.

Abstract interpretation is a well developed theory for constructing static pro-
gram analyses [13, 39, 12]. Abstract interpretation provides a formal method
for deriving an approximation that is based on the semantics of the ana-
lyzed language. The approximation represents behavior of the program in
an abstract domain that is an abstraction of the concrete semantics of the
language. The behavior of the program is characterized by equations that
are usually solved by a method called fized-point iteration. A common way

to implement fixed-point iteration is the worklist algorithm.

13

CHAPTER 2. BACKGROUND

In the equational approach the program is analyzed by generating a system of
set equations that describes the properties of the program. The set equations

can be solved by fixed-point iteration.

The constraint based approach is very similar to the equational approach.
Instead of equations, the program is described by a system of inequations.
For each system of equations there are multiple systems of inequations that

have the same minimum solution as the equations.

There are other approaches to static program analysis as well. For example,
type and effect systems describe the program by two forms of judgments:
properties of states before and after executing a statement of the program,
and the effect of each statement [39].

2.5 Types of Static Program Analyses

Data flow Analysis

The process of collecting information about the way variables are used during
run time is called data flow analysis [3]|. Different properties of the data flow

of the program can be analyzed.

Liveness tells which variables have a defined value, i.e. are live, at a pro-
gram point. Awvailable expressions describes which calculated expressions are

available at a program point:

An expression x @ y is available at a node n in the flow graph if|
on every path from the entry node of the graph to node n, £ ® y is
computed at least once and there are no definitions of z or y since the

most recent occurrence of z @ y on that path. [5]

Reaching definitions describes a relation between variable definitions and

uses. For each assignment of a value to a variable, it tells the program

14

CHAPTER 2. BACKGROUND

points at which the variable still has that value [10]. Reaching erpressions
do roughly the same to expressions as reaching definitions to values. For each
calculated expression, it tells the program points at which the expression still

has that value.

The data flow of a program can be described with simple set equations called
data flow equations. The equations can be solved by fixed-point iteration.
The set equations usually have multiple safe solutions. The minimum solu-
tion or munimum fized point describes the solution that is most accurate, i.e.

contains least superfluous information.

Control Flow Analysis

Control flow analysis finds the possible execution paths of a program [3].
The control flow defines the order, in which statements of the program can be
executed. There are many ways to represent the control flow (see Section 2.7)

and to execute the analysis (for example bottom-up, top-down, up-and-down).

The control flow graph may contain loops, i.e. sequences of instructions that
are executed repeatedly. One method for determining the loop structure of

a control flow graph is the notion of dominators.

Example 2.3 (dominating) A node d of a flow graph dominates node n,
written d dom n, if all paths from the initial node of the flow graph to n go
through d.

Domination can be presented as a dominator tree [3]. In the dominator tree,
each node dominates only its descendants in the tree. An example of the
dominator tree of a simple control flow graph is presented in Figure 2.5. All
the loops of the control flow graph can be found by searching for edges where
the control flows from a node to its dominator. These edges are called back

edges.

15

CHAPTER 2. BACKGROUND

Control flow graph Dominator tree

Figure 2.5: Dominator tree of a simple control flow graph

The control flow of a program is reducible, if it only contains loops that are
either completely nested with each other, or separated [3|. Irreducible control
flow contains partially overlapping loops. An irreducible control flow graph

is more difficult to analyze than reducible.

Structured programs are easier to analyze than unstructured programs. Struc-
tured programs contain no goto statements nor breaks from inside loops,
whereas unstructured programs can contain them. In general, the control
flow is more evident in a program written in a high level language. Low level
code is more difficult to analyze. Problems that arise when extracting control

flow information from a binary format are discussed in Section 2.7.

Producing the control flow graph from a binary executable for modern ar-
chitectures is difficult [51]. Problems may arise, for example, in the presence
of memory indirections (jump or call tables, procedure variables, etc.), am-
biguous usage of machine instructions, very long instruction words (VLIW),

interlocked or overlapping procedures and data inside code blocks.

It may be impossible to derive all required control flow information from
very complex programs [17|. In many automatic control flow analyzers the

analysis is done with the help of manual annotations inserted in the code.

16

CHAPTER 2. BACKGROUND

The programmer can use the annotations to insert extra flow information

within the program code.

Value Analysis

Value analysis computes possible values of variables or machine registers
[3]. The possible values of each variable or register are represented as sets or
ranges of values. In some cases, value analysis can be used to improve control

flow analysis, for example, by detecting infeasible conditional branches.

Alias Analysis

Alias analysis finds aliases, i.e. variables that share the same memory loca-
tion |5]. The following variables can be aliases: variables passed as call-by-
reference parameters, variables whose address is taken, l-value expressions
that dereference pointers, 1-value expressions that contain array subscripts

and variables used in inner-nested procedures.

Shape Analysis

Shape analysis determines information about the heap-allocated data struc-
tures that the program manipulates [33, 45]. It tries to find “shape invariants”

for programs that destructively update dynamically allocated storage.

Interprocedural Analysis

Usually the different analyses presented above are intraprocedural, i.e. re-
stricted to a local level within a single procedure. Interprocedural analysis

performs static analysis globally across the procedures of the program.

17

CHAPTER 2. BACKGROUND

Interprocedural analysis is more difficult than intraprocedural analysis, be-
cause procedure calls often contain call-by-reference parameters, which leads
to aliasing. Usually alias analysis is needed before interprocedural value or

data flow analysis can be performed.

Another problem in interprocedural analysis is distinguishing the call context
of procedures. The same procedure may result in different analysis results

when it has been called from different parts of the program [44].

Interprocedural analysis can be further divided into intratask interference
(interference caused by procedures of the same task) and intertask interfer-

ence (interference caused by context switches and other tasks).

2.6 Execution Time Analysis

One way to guarantee that deadlines of a real-time system are met is to
calculate the worst case execution time and best case execution time of tasks
of the system. It may be difficult to calculate the actual execution times
(WCET, and BCET,). Instead, estimated execution times (WCETg and
BCETE) can be used. The estimated execution times must be safe, i.e.
WCETg > WCET, and BCETg < BCET 4. They should also be tight, i.e.
as close as possible to the actual execution times. Estimating the execution

times of a program is illustrated in Figure 2.6.

Note, that calculating the WCET of a system does not tell us, what is the
worst case execution, i.e. what input causes the system to spend most time.
Respectively, BCET calculation does not reveal the fastest execution, only

the duration of the fastest execution.

Static worst case execution time analysis of a program is usually decomposed
into control flow analysis, microarchitecture analysis and path analysis [18].
Control flow analysis discovers the control flow of the program. Microarchi-

tecture analysis consists of analysis of various features of the architecture,

18

CHAPTER 2. BACKGROUND

A
execution
time
estimated
WCET —> ---------------------
tighter
actual estimate
WCET
actual /\
BCET tighter
estimate
estimated
BCET —2 """~ ----------------

(I

best case worst case

Figure 2.6: Estimating execution times of a program

such as wvalue analysis (determining possible register values), cache analy-
sis (determining which memory accesses cause cache hits and misses) and
pipeline analysis (determining which operations cause pipeline stalls). Path
analysis estimates the length of the longest execution path based on microar-

chitecture analysis.

Ermedahl [17] has presented a review of tools that perform flow analysis,
cache and pipeline analysis, and path analysis. Developers of real-time sys-
tems would find it valuable, if a WCET analyzer could be integrated with

other tools of the development environment [4].

Cache Analysis

A cache miss causes a severe performance penalty. Therefore, it is important
to know the number of cache hits and cache misses in order to get a precise
WCET estimate. For the programmer, it would also be valuable to know,

which memory accesses of a program are hits and which are misses.

19

CHAPTER 2. BACKGROUND

Cache analysis computes the cache state at each program point with the help
of an update function. The update function describes how a memory access

alters the cache state.

Pipeline Analysis

In order to get precise WCET estimates, also the behavior of the pipeline
needs to be analyzed. A pipeline contains only a few instructions, whereas
caches can contain megabytes of data. Therefore the sets of possible pipeline
states are smaller than sets of possible cache states. Also, the pipeline does
not have a complicated replacement policy: instructions enter the pipeline

from the other end and leave it when they are done.

A pipeline with branch prediction may cause the processor to fetch instruc-
tions that will never be executed [18]. This may affect the cache and trans-

lation look-aside buffer state, which complicates the analysis.

Path Analysis

After the control flow of the program has been resolved, and the timings
of individual instructions have been calculated, path analysis calculates the
estimated length of the longest execution path of the program. There are

several approaches to path analysis.

Implicit path enumeration technique (IPET) is an approach that is based
on integer linear programming (ILP) or constraint programming (CP). In
IPET the program is represented as a set of integer constraints. Solving
the set of constraints reveals the length of the longest path. The path itself
is not explicitly known, hence the name implicit path enumeration [17]. A
program representation for implicit path enumeration technique is presented

in Section 2.7.

20

CHAPTER 2. BACKGROUND

Sequence Loop Conditional execution
wcet_sl + wcet_s2 maxiter * (wcet_t + wcet_s + wcet_i) wcet_t + max(wcet_s1, wcet_s2)
+ wcet_t + wcet_exit f

| if () then s1, else s2; |

wcet wcegt_s cet_i wcet t weel_sl \wecet_s2
L] L] [Lef [(2]

Figure 2.7: WCET calculation in tree based path analysis

In the tree based approach the program is represented as a syntax tree. Length
of the longest path is calculated by traversing the tree in a bottom-up fashion.
WCET of a program part is calculated recursively by using WCET of smaller
parts of the program (see Figure 2.7 for simple rules of the calculation).
[42, 11]

The main shortcoming of the tree based approach is, that it is limited to
structured programs. The tree based approach also assumes that the bounds
for execution time of the program can be derived from bounds for execution

time of parts of the program. [31]

In the path based approach, the execution paths of a program fragment are ex-
plicitly explored. This approach handles complex flow constraints somewhat
better than the others [31].

2.7 Program Representations

In order to be analyzed, a program needs to have a suitable representation.
Not all possible representations are suitable for static program analysis. For
example, a program represented in a high level language is more difficult to

analyze than the same program represented in a low level language [19].

21

CHAPTER 2. BACKGROUND

Programming languages are designed to be used in text files that are readable
by human. Object code is suitable for storing the program in a linkable file.
A binary executable is a compact format suitable for storing and executing
the program. All these formats are cumbersome to analyze. The program
to be analyzed is usually translated from these formats into an intermediate

representation.

An ideal intermediate representation is

easy to generate,

e casy to analyze,

easy to manipulate, and

easy to translate into target code [3].

Ermedahl [17] has surveyed the different program representations used in
WCET analysis. He states that all program flow information is not useful in
every type of analyses. Also, not all program representations can represent
all possible program flows. Therefore, the program representation should

contain a sufficient amount of flow information, but no more.

Different kinds of static analyses impose different requirements on the pro-
gram representation [8]. The following contains description of common rep-

resentations used in static program analysis.

Control Flow Graph

Control flow graph (CFG) is a low level program representation [5]. The
nodes of a control flow graph are basic blocks. A basic block is a sequence
of individual instructions that is always entered at the beginning and exited
at the end. There is an edge in the control flow graph from a basic block to

each basic block that can be executed right after the former block.

22

CHAPTER 2. BACKGROUND

Abstract Syntax Tree

Abstract syntaz tree (AST) is a high level program representation can be
derived from the parse tree of a program by removing most non-terminal
symbols. The abstract syntax tree presents the structure of the source pro-
gram. Because only lexical dependencies between expressions are contained,
it is difficult to recognize semantic dependences between expressions in an

abstract syntax tree. [37]

Colin and Puaut [11] use a program representation that contains a control
flow graph and an abstract syntax tree of the program. They perform tree

based path analysis on the abstract syntax tree.

Dependence Graph

Dependence graph is a program representation that is used in some mod-
ern compilers [3|. A dependence graph describes how the computations of a
program depend on each other. A dependence graph imposes minimal con-
straints on the order of the nodes. Results of some analyses, for example
cache and pipeline analysis, depend on the order of execution of program
nodes. For this reason dependence graphs alone are not an adequate repre-

sentation for those analyses.

Scopes and Flow Facts

Engblom and Ermedahl |16, 17] perform WCET analysis by representing the
dynamic behavior of programs with the concepts of scopes and flow facts.
Scopes are individual executing environments of the program, such as func-
tion calls and loops, that can be iterated. Scopes form a recursive scope tree.
Each basic block of a control flow graph belongs to one scope. Flow facts

are integer constraint expressions that are assigned to specific contexts. The

23

CHAPTER 2. BACKGROUND

function f() {

gO;
h(); °

}
function g() { “
}
function h() {

g0; °
}

Figure 2.8: The call graph of a simple program

constraint expressions give limits to the possible execution counts of a single

scope. A context specifies a set of iterations of a scope.

Call Graph

The procedures of a program can be called from multiple points in the pro-
gram. From an analysis point of view the same procedure may behave differ-
ently when called from different program points. The possible call contexts
of procedures can be presented as a call graph. The call graph has a node
for each possible call context of a procedure. Edges of the call graph show
the individual calls from procedure to another. An example of a call graph

is presented in Figure 2.8.

2.8 Static Analysis in Compilers
Compilers are a major class of tools that perform static program analysis.
It is useful to know the basic architecture of a typical compiler. Also, when

analyzing a program, it is important to understand, how a compiler may

24

CHAPTER 2. BACKGROUND

transform the program flow described in the original source code.

A compiler translates a source program written in a programming language
into an executable format [3]. A compiler is usually divided into front end,
which reads and analyzes the source code, and back end, which produces
target code for the target architecture. This is the analysis-synthesis model

of a compiler.

The front end translates the source program into an intermediate represen-
tation (see Section 2.7) from which the back end generates target code. The
intermediate representation is used when static analysis is performed on the
program. The representation is usually machine-independent, which makes
it easier to apply machine-independent optimizations to the program, based
on the analysis. Also, retargeting the compiler for a new target architecture

is easier, because only a new back end is required.

Typical optimizations that are done during compilation are common subex-
pression elimination, copy propagation, constant folding, unreachable code
elimination, dead code elimination and strength reduction. Different kinds of

static analyses of the program are needed to perform different optimizations.

Common subexpression elimination removes expressions that compute values
that are already computed. Copy propagation removes unnecessary assign-
ments, that only rename a variable. Constant folding evaluates program
elements that get constant values. Unreachable code elimination removes
code that cannot be executed. Dead code elimination removes code that
produces values that are not used. Strength reduction replaces expensive
operations by equivalent cheaper operations. The effect of these compiler

optimizations is illustrated in Figure 2.9.

25

CHAPTER 2. BACKGROUND

Common subexpression elimination Copy propagation
a=c*d, a=c*d, a=b; a=b*b
b=c*d; -3 | b=a*g c=a*a - | a=a+
b=a*b; a=c+b;

Constant folding Unreachable code elimination
a=2, a=2, ret; ret;
b=3; 9 b=3; a=b*c; 9 L1:
c=a*b; C=6; L1:

Dead code elimination Strength reduction
a=b* a=b+4,; a=2*c; a=c+c;
a=bh+ 9 b=c/4: 9 b=c>>2;

Figure 2.9: Effect of some compiler optimizations

2.9 Related Work

This section presents existing analyzer generators, frameworks and indepen-
dent tools for static program analysis. Most of the tools are for performance
evaluation, since the focus of this work is on performance evaluation. The

work presented here works as a basis for the contributions of this thesis.

Analyzer Generators and Frameworks

PAG (Program Analyzer Generator) [34] is a tool for generating static pro-
gram analyzers. It has been developed at the Universitit des Saarlandes,
Germany, in which there has been active research on WCET and static pro-
gram analysis. The USES-group |[18| has presented a modular system for
calculating reliable run-time guarantees. Késtner and Wilhelm [28]| have
presented a top-down method based on program slicing for generating the
control flow graph from assembly code. Theiling [51] has presented a bottom-

up approach for generating the control flow graph from binary code.

26

CHAPTER 2. BACKGROUND

Ermedahl [17] has presented a modular WCET tool architecture and a pro-
totype implementation that supports analysis of NEC V850E and the ARM9
architectures. The tool uses a program representation based on scopes and
flow facts (see Section 2.7) for WCET analysis.

Z1 is a data flow analyzer generator [57]. The user of Z1 provides a parser and
an abstract interpreter of the language to be analyzed. The tool produces an
executable analyzer, that maps each program point to an abstract program
state. The user of Z1 can set a parameter for a desired cost-accuracy balance.
The tool then generates an analyzer which has the specified performance
balance. The balancing is achieved by simplifying the domain of analysis

sufficiently with projection expressions provided by the user.

Mueller [38] has presented a framework that uses the data flow approach for
bounding worst-case instruction cache performance for caches with arbitrary
levels of associativity. The framework is based on the work of the group at
Florida State University [54].

EEL (Executable Editing Library) [29] is a library that supports generating
a control flow graph from binary executables. The library is implemented in

C-++. Executable files can also be modified via the library.

Individual Tools

aiT [1] is a set of commercially available WCET analyzers by AbsInt. aiT is
based on PAG and the work at the Universitit des Saarlandes. aiT performs
the analysis on machine code level and supports several modern hardware
features. For example, it can analyze the pipeline and cache of ColdFire,
PowerPC and ARMT7 processors. The aiT tools were originally designed in
the DAEDALUS project [40] for validating the timing behavior of avionics

software.

Bound-T [23| is a commercially available WCET analyzer for simple binary

27

CHAPTER 2. BACKGROUND

code. The tool constructs a control flow graph and a call graph from the
binary executable [24]. Then it analyzes loop bodies in order to find loop
counters. The tool uses the Omega system [41] to implement the loop analy-
sis in Presburger arithmetic. Integer linear programming is used to find the
worst execution path. The user of Bound-T can provide the tool with asser-
tions (for example loop bounds) that help tighten the time estimate. The
tool does not support indirect memory accesses, indirect branching, loops

without explicit counters nor programs with irreducible control flows.

Heptane [2] is a tree based WCET analyzer that is available under the GPL
license. The tool can analyze instruction cache, pipeline, and branch predic-
tion of Intel Pentium and MIPS processors. Analysis is done on programs
written in ANSI C. A retargetable assembly transformation tool is used to

obtain hardware dependent information.

GROMIT [21] is a tool for static timing analysis of superscalar processors. It
supports two processors of the PowerPC family. The tool is implemented in

the Java language.

Cinderella [56| is a prototype tool for bounding worst case execution times
of binary executables on the Intel i960KB and Motorola MC68000 processors.
The tool models cache behavior by using linear constraints that are solved
by an method based on IPET. Cinderella supports retargeting by separating
the target dependent parts from target independent parts of the tool.

28

Chapter 3

A Framework for Static Program

Analysis

This chapter presents the main contribution of this thesis: a framework for
static program analysis. The framework is intentionally defined on a general

level, which allows for constructing very different static program analyzers.

3.1 Design Principles

The basic architecture of the framework resembles the analysis-synthesis
model of compilers. Interchangeable front-ends input the program into the
analyzer. Then, analyses are performed on the intermediate representation.

Instead of target code, the back end outputs results of the analyses.

The framework is divided into modules. Each module solves a specific prob-
lem in creating a static analyzer. Each module also has a well defined inter-
face. Therefore it is possible to develop modules of the framework individu-

ally.

29

CHAPTER 3. A FRAMEWORK FOR STATIC PROGRAM ANALYSIS

input analysis

Y Y

program analysis machine
representation results description

output

Figure 3.1: Interaction between modules of the framework

3.2 Modules of the Framework

The framework contains six modules with specific purposes:

Module | Purpose

Input Inputting the program to be analyzed.
Program | Representing the program.

Machine | Describing the target machine.
Analysis | Analyzing the program.

Results | Representing the results of the analysis.

Output | Outputting the results of the analysis.

The interaction between the modules is illustrated in Figure 3.1. Input reads
the program to be analyzed and stores it in the format specified by program
representation. Machine description contains information about the target
machine needed by the analysis. Analysis uses the program representation
and machine description and produces analysis results, also possibly altering
the program representation. Qutput presents the results of the analysis,

potentially utilizing the program representation and machine description.

30

CHAPTER 3. A FRAMEWORK FOR STATIC PROGRAM ANALYSIS

Input

The Input module is responsible for lexical analysis and parsing of the pro-
gram to be analyzed. It must extract the control flow of the program. The
Input module uses the Program module to build the analyzable representa-

tion of the program.

Depending on the implementation of the Input module, the input program
can be, for example, high-level source code, assembler code, object code or a

binary executable.

The Input module stores, from which input file and which line or position of
the file each expression of the input program is from. If the relation between
program expressions and original source code is also required in the analysis,

Input module is responsible for extracting that relation as well.

Example 3.1 Usually, a compiler produces several assembler instructions
to itmplement a single high level language expression. A way for determining
the relation between assembler instructions and original high level expres-
stons 1s from debug data produced by the compiler. One format suitable for

determining the relation is the “stabs” debug format [35].

There is one input instance for each input file of the program to be analyzed.
This allows, for example, the analysis of dynamically linked programs, that

use several input files in order to be executed.

When analyzing the control flow of assembly or machine language code, it
is worth noting that conditional branches and function returns are the only

instructions after which the control can flow to several directions.

31

CHAPTER 3. A FRAMEWORK FOR STATIC PROGRAM ANALYSIS

Program

The Program module defines a representation for the program to be analyzed.
A program is represented as a simple control flow graph, because it is a

representation that can be utilized in most analyses.

It was decided, that the flow graph contains individual instructions instead of
basic blocks as nodes of the control flow graph. This makes the representation
and analyses simpler (separate local analysis of the contents of the basic
blocks is not required), while no information is lost. The set of possible

instructions is described by the Machine module.

In addition to the control flow graph, the program representation also con-
tains symbol tables that map labels to addresses and addresses to nodes of
the control flow graph. These can be used to input program written high

level languages or symbolic assembler.

The Program module also stores information about procedures of the pro-
gram. The Input module calculates and stores in the control flow graph for
each node which procedure it belongs to. Each procedure has an entry node

and several possible exit nodes.

Information equivalent to a call graph (Section 2.7) is stored implicitly within
the procedures. Each procedure knows, which procedures it calls. This allows
presenting the call contexts within infinitely recursive and mutually recursive

procedures.

If a procedure needs to be analyzed differently in different call contexts, the
subgraph which represents the procedure can be duplicated. In the VIVU
approach [52| the same method is also used to distinguish the first iteration

of a loop from the rest.

32

CHAPTER 3. A FRAMEWORK FOR STATIC PROGRAM ANALYSIS

Machine

The Machine module provides means for representing the target machine and
its properties, such as number of registers. This information may be used in

analyzing the program.

The module also defines the instruction set of the machine. The major prop-
erties of an instruction that affect many analyses are, whether the instruction

modifies control or not, and whether the instruction accesses memory or not.

The module contains an abstraction for representing machine resources, such
as machine registers. A machine resource is divided into cells, e.g. individual

registers.

The following properties of the target machine may be relevant to the anal-
ysis: calling conventions, binary and assembler representations of instruc-
tions, semantics of instructions, power consumption, code size, cycle counts,

pipeline implementations, and memory hierarchy [43].

Analysis

The Analysis module is very simple in order to support all kinds of static
program analyses. Basically it just provides an interface for adding new
analyses that can communicate with the program representation and machine

description, and produce analysis results.

The previous chapters present the general theory and worked examples of
static program analysis. Each analysis has its own special considerations.

The implementation of each analysis is left open to the user of the framework.

33

CHAPTER 3. A FRAMEWORK FOR STATIC PROGRAM ANALYSIS

Results

Analysis results can be intermediate or final. Intermediate results are used
during the computation of the analysis. Final results are presented in the

Output module.

Analyses can also produce global or local results. Global results, which de-
scribe the program as a whole, can include execution time of the program
and throughput of the software as per a certain service. There can be also

some statistics about the program that are global.

Local results are analysis results that are associated with certain nodes or
edges of the control flow graph. These include program state at a program

point, and cache or pipeline state.

Nodes and edges of the control flow graph can store information about the
state of the program. This will be used to store intermediate and final results

of the analyses.

Output

The best way to present the results of the analysis depends on the type of
the analysis. Global analysis results may be represented as straightforward

text or tables.

Graph visualizing provides a natural format for presenting local analysis
results that are tied to nodes and edges of the control flow graph. However,
the visualized control flow graph of a program becomes easily very large, and

the results of the analysis may get lost in the vast of nodes and edges.

A very useful output method would be to present the analysis results with
the original source code of the program. For example, the memory references

that cause a cache miss could be marked in the original source code.

34

CHAPTER 3. A FRAMEWORK FOR STATIC PROGRAM ANALYSIS

3.3 Conclusions

The presented framework has a clear, modular architecture. Each module is
interchangeable and fulfills a specific purpose. New features can be added to

the modules as long as the current interfaces are preserved.

The Input module supports creating front ends for all kinds of program rep-

resentations.

According to Engblom [14] a complete WCET analysis tool must be able to
handle the following program features: recursion, unstructured flow graphs,
function pointers and function pointer calls, data pointers, deeply nested
loops, multiple loop exits, deeply nested decision nests, and non-terminating
loops and function. The Program module supports representing all these

features.

The Machine module is general enough to encompass all required machine
descriptions, and provides an useful abstraction for representing machine

resources.

The interface provided by the Analysis module is intentionally left very gen-
eral, so that it is possible to plug in all present and future analyses. More
specific communication between analyses and the rest of the framework need

to be specified by the user of the framework.

Results of the analysis can be stored either globally, or locally into the con-
trol flow graph. The Output module allows a wide range of outputs to be

generated from the analysis results.

35

Chapter 4

Prototype Implementation:
JSPAF

This chapter presents Java Static Program Analysis Framework (JSPAF), which
is a prototype implementation of the presented framework. The implemen-
tation contains Java packages for creating static program analyzers. JSPAF
is not an analyzer generator. Instead, it facilitates creating an analyzer in a

general purpose programming language.

The user of JSPAF is a programmer who wants to construct a static program
analyzer in the Java programming language. This chapter describes how the

framework works and how it can be used to build static program analyzers.

4.1 Architecture

In JSPAF the problem of creating a static analyzer is divided into several
subproblems, which relate to the modules presented in the previous chapter.
The modules implemented and subproblems solved by the Java packages are

presented in Table 4.1.

36

CHAPTER 4. PROTOTYPE IMPLEMENTATION: JSPAF

Subproblem Module | Package
Inputting the program to be analyzed. Input input
Representing the program. Program | program, graph
Representing the target machine. Machine | instr, machine,
resources
Analyzing the program. Analysis | analysis
Representing the results of the analysis. Results | analysis
Outputting the results of the analysis. Output | output
Reporting and logging progress of analysis. | - log
Interfacing analyzer with the user. - main

Table 4.1: Subproblems solved by packages of JSPAF

The four interfaces Interfaces provided by the JSPAF framework to the user
are illustrated in Figure 4.1. input allows adding new front ends that reads
the program to be analyzed. machine contains the target machine descrip-
tion. analysis performs a specific static analysis. output presents the

results of the analyses.

JSPAF was designed to be easily extended and modified. Many packages
provide interfaces that will be implemented by user code. The packages and

classes of the framework are illustrated in Figure 4.2.

The sizes of the packages of JSPAF are presented in Table 4.1. Next, a more

detailed description of each package is given.

input

Package input implements the Input module of the framework. The package
provides an interface for inputting the program to be analyzed. The input
analyzes the syntax of the program, parses it, and generates the program

representation. It stores for each instruction, from which file and position

37

CHAPTER 4. PROTOTYPE IMPLEMENTATION: JSPAF

analysis
input JSPAF machine

output

Figure 4.1: Interfaces provided by the JSPAF framework

resour ces gr aph
CellContainer

A

[Cellset] [CellList —|

’ ‘ program

CellComparator

~[Grah

ControlFlowGraph

[ControlFlowGraphEdge | [ControlFlowGraphNode

[cellRange| [cell]

anal ysi s
java.util. HashMap
[StateSet e << State >> .
i nput

instr
omee]
nachi ne Eﬂﬁ!ﬁi

.
el N e B B
Q

[Main | [Log] [Output | [Machine] [Instruction | [InputPosition |

Figure 4.2: Packages and classes of the JSPAF framework

CHAPTER 4. PROTOTYPE IMPLEMENTATION: JSPAF

package lines of code | relative size
input 196 6,4 %
program 748 24 %
graph 344 11 %
instr 216 7,0 %
machine 08 3.1 %
resources | 912 30 %
analysis | 215 7,0 %
output 48 1,6 %
log 50 1,6 %
main 249 8,1 %
total 3076 100 %

Table 4.2: Absolute and relative sizes of the packages of JSPAF

the instruction has been read.

The input package was designed so, that a lezer and parser generator can
be used for lexical analysis and parsing of the input files. A lexer generator
produces the program code for lexical analysis based on an input file, which
describes the syntax of the input. A parser generator produces the code for
parsing the input according to an input file, which describes the grammar
of the language. Popular parser generators for Java include JavaCC [50],
JavaCUP [25] and Grammatica [9).

program

Package program implements the Program module of the framework. It pro-
vides the data structures used by the Input module to construct the program
representation. The program representation consists of a list of inputs used

to construct the representation, the control flow graph of the program, pro-

39

CHAPTER 4. PROTOTYPE IMPLEMENTATION: JSPAF

cedures of the program, and symbol tables used to store labels used in the

program.

The representation for procedures contains the name, entry node, and exit
nodes of the procedure. Also, each procedure contains the set of procedures
called by the procedure, which is used to implicitly represent the call con-
text information. If a traditional call graph is required by an analysis, it is
straightforward to implement one with the help of the general graph imple-

mentation in the graph package.

The symbol tables are implemented as hash maps from a label to an address,

or from an address to a control flow graph node.

graph

Package graph supplements the Program module by providing general data
structures and methods for representing and manipulating directed graphs.

Nodes and edges of the graph can contain data.

instr

The instr package is the first of three packages used to implement the Ma-
chine module. It provides an interface for describing the instruction set of
the target machine. The data stored about an instruction is: original code
(for example the assembly code of the instruction), address, byte size, argu-
ments, resource cells used by the instruction, and resource cells defined by

the instruction.

Regular types of binary and relational operations are readily provided for

easy implementation of such instructions.

40

CHAPTER 4. PROTOTYPE IMPLEMENTATION: JSPAF

machine

The machine package also contributes implementing the Machine module. It
provides an interface for defining general properties of the target machine. A
set of machine registers is readily defined. The number and type of registers

are parametrized.

resources

The resources package is the part of the Machine module that is used
to implement all machine resources that can be divided into discrete cells.
Examples of such machine resources are the register file of the processor, the

pipeline of the processor, a cache memory or a translation look-aside buffer.

The package provides data structures and methods for constructing, manip-
ulating, and comparing sets and lists of resource cells. In addition to describ-
ing the target machine, this package is useful in implementing analyses that

consider the machine resources.

analysis

The package analysis implements module Analysis of the framework. It
provides two aids for defining analyses. The first aid is an analysis interface

that has access to the program and machine representations.

The second aid is an abstraction of an analysis state, which is used to repre-
sent the analysis results, either within the control flow graph, or in separate
global data structures. Analysis states can be manipulated and compared

with each other.

41

CHAPTER 4. PROTOTYPE IMPLEMENTATION: JSPAF

output

The output package implements module Output of the framework. It defines
an interface for outputting results of the analysis. The interface has access

to the program representation, analysis results and the machine description.

log

The log package helps in reporting the progress of the analysis. It provides

means for outputting messages on the terminal and optionally to a file.

main

The main package contains the main program that runs the analyzer. It pro-
vides means for parsing the command line, and running the inputs, analyses

and outputs.

4.2 Conclusions

JSPAF is a collection of Java packages that implements the modules of the
framework presented in Chapter 3. It provides interfaces, data structures

and methods for creating static program analyzers in the Java language.

JSPAF provides most of the basic functionality needed in a static program
analyzer. With the help of JSPAF, designers of a static program analyzers
do not need to start from scratch. Instead, they can add individual modules,

such as inputs, analyses, and outputs, on top of the framework.

42

Chapter 5
Practical experience

The author collected practical experience about the framework by building
three applications on the JSPAF framework. The framework was still refined
during implementation of the applications. This chapter describes how the

applications were created.

A pipeline timing analysis tool that was built by Tukkinen [53] on top of the
JSPAF framework is shortly presented at the end of this chapter.

5.1 Liveness

The first application with the framework was to implement a simple liveness
analysis of machine registers. The analysis calculates, which machine reg-
isters are live at each program point. It uses the simple iterative liveness

analysis algorithm presented in Figure 5.1.

Liveness analysis was easy to implement because the framework provided
representation of the program as a control flow graph and means to manip-
ulate sets of registers. The analyzer was at first tested by hand generated

control flow graphs, since no inputs (front ends) were implemented.

43

CHAPTER 5. PRACTICAL EXPERIENCE

repeat

for each edge in edges do begin
edge.live := edge.endNode.live;

end

for each node in nodes do begin
node.live := {};
for each edge in node.outgoingEdges do

node.live := node.live V edge.live;

node.live := node.live \ node.defs;
node.live := node.live V node.uses;

end

until (no live set changes);

Figure 5.1: Algorithm for liveness analysis

The whole liveness analysis package contains about 330 lines of well Javadoc
commented Java code, which are distributed evenly across the three classes

in the package. The package contains the following classes:

LivenessAnalysis Implementation of the liveness analysis algorithm.

LivenessState The set of live registers at a program point. Contains meth-

ods for manipulating the set.

LivenessOutput An output that writes contents of the control flow graph
(including liveness information) to a file that can be rendered by the graphviz

[6] graph drawing program.

44

CHAPTER 5. PRACTICAL EXPERIENCE

5.2 Simple Machine

After implementing the first application there was a need to construct control
flow graphs from real programs. A front end was built for an abstract pro-
cessor called Simple Machine (SM). Simple Machine is an abstract register

machine with a simple instruction set [22].

Package sm implements assembler input, machine description, and instruction
set of Simple Machine. The package contains about 800 lines of properly
Javadoc commented Java code, of which about 450 lines contain description
of the instruction set. In addition there is a 85 line input file for the lexical

analysis generator and a 300 line input file for the parser generator.

Input

Input of Simple Machine assembler code is implemented by the class SMIn-
put, which extends class input.Input. Input consists of lexical analysis, pars-
ing and flow analysis. Flow analysis includes converting jump target labels to
actual jump offsets, and analyzing control flow of procedure calls and returns

from procedures.

The assembler code is translated into tokens by a lexical analyzer gener-
ated with the JLex[7] lexical analyzer generator. Tokens of Simple Machine

assembler are specified in SM.lex, the input file for JLex.

The tokenized input is parsed by a parser generated with the JavaCUP[25]
parser generator. Grammar of Simple Machine assembler is specified in
Grm. cup, the input file for JavaCUP. The parser stores the program as an
incomplete control flow graph. Each instruction is stored in one node of the
control flow graph. Control flow of jumps, function calls and function re-
turns is still missing from the control flow graph. The parser adds all labels
to symbol tables, which map labels to addresses and addresses to control flow

graph nodes. After the first pass the symbol table contains all labels of the

45

CHAPTER 5. PRACTICAL EXPERIENCE

procedure analyzeNode(proc, node)
begin
if (node.procedure # null) then return;
node.procedure := proc;
if (node is a call) then begin
proc.addCall(node.calledProcedure);
analyzeNode(node.calledProcedure, node.calledNode);
analyzeNode(proc, node.nextNode);
end else if (node is a ret) then
proc.addExitNode(node);
else for each successor in node.successors do
analyzeNode(proc, successor);

end

Figure 5.2: Algorithm for analyzing procedures of the program

program.

In the second pass control flow of jumps to labels is calculated. This means
that from each control flow graph node that contains a jump instruction an
edge is added to the target node of the jump. Target nodes are resolved by
using the symbol table. The integer offset of the jump is also stored in the

jump instruction.

The third pass analyzes procedures of the program. The algorithm is pre-
sented in pseudo code in Figure 5.2. The control flow graph is traversed by
going through all nodes reachable from the start node of the program. Each
node is marked as belonging to a procedure. Entry and exit nodes of each
procedure are stored in a data structure in class Program. The node labeled
main is interpreted as the start node. A move to register r3 (return address)
followed by an unconditional jump is interpreted as a procedure call. All
program points targeted by a procedure call are interpreted as procedure

entries. A return instruction is interpreted as an exit node of a procedure.

46

CHAPTER 5. PRACTICAL EXPERIENCE

procedure retTargets()
begin
for each node in controlFlowGraph do begin
if (node is a call) then begin
nextNode := node.nextNode;
proc := node.calledProcedure;
for each exitNode in proc.ExitNodes do
controlFlowGraph.addEdge(exitNode — nextNode);
end
end

end

Figure 5.3: Algorithm for analyzing returns from procedure calls

The fourth and final pass analyzes control flow of returns from procedure
calls. The algorithm is presented in pseudo code in Figure 5.3. For each
control flow graph node that is a call, a control flow edge is added from
the exit nodes of the called procedure to the instruction right after the call

instruction.

After the fourth pass all procedures and procedure calls of the program are
known. Also, the control flow graph contains all structurally possible execu-

tion paths.

Machine description

The Simple Machine architecture is described by the class SMMachine, which
extends class machine.Machine. It contains the following parameters of the
architecture: number of registers, size of memory in words, and size of in-

struction in bytes.

47

CHAPTER 5. PRACTICAL EXPERIENCE

Instruction set

Instruction set of the Simple Machine is described by classes that inherit
class SMInstruction, which extends instr.Instruction. These classes are:
BinOp, Jmp, Jmp and its subclass JmpCond, Loadw, Storew, Loadb, Storeb,
Mov, Nop, Ret, and Not. The most interesting is Jmp, which stores the target
label, target node, target address offset and sequential successor of a jump

instruction.

5.3 Basic Block

Package basicblocks implements a simple basic block analysis. The pack-
age contains about 500 lines of properly Javadoc commented Java code.
About 200 lines belong to class BasicBlockAnalysisanalysis which per-
forms the analysis, about 150 lines belong to class BasicBlock which is
used to represent results of the analysis, and about 150 lines belong to class

BasicBlockOutput, which is used to output the results of the analysis.

The analysis combines nodes of a control flow graph into basic blocks. If a
node has only one outgoing edge and the node at the end of the edge has
only one incoming edge the two nodes are grouped together in a basic block.

See the algorithm in Figure 5.4.

The control flow inside a basic block is sequential. The basic block can only
be entered through the entry node and left through the exit node. There can
be no conditional branches inside the basic block. However, a basic block

may contain unconditional jumps, function calls and returns.

48

CHAPTER 5. PRACTICAL EXPERIENCE

procedure analyzeBasicBlock(node)

begin
block := new basicBlock();
block.add(node);

outgoing := node.outgoingkdges;
while (size(outgoing) = 1) do begin
next := head(outgoing).endNode;
if (size(next.incomingEdges) = 1) do begin
block.add(node);
outgoing = next.outgoingkdges;
end else
break;
end
for each edge in outgoing do
analyzeBasicBlock(edge.endNode);

end

Figure 5.4: Algorithm for basic block analysis

49

CHAPTER 5. PRACTICAL EXPERIENCE

5.4 Pipeline Timing Analysis Tool

Tukkinen [53] has implemented in his master’s thesis a prototype tool for
pipeline analysis. The tool was built on the JSPAF framework presented in
this thesis.

The target machines of the tool are ARM7TDMI and ARM9TDMI. The first
has a 3-stage pipeline and the latter a 5-stage pipeline. The tool contains a
front end that inputs assembly code generated by the GCC compiler. The
analysis part of the tool computes cycle counts for individual instructions.

Pipeline effects are accounted for in the analysis.

5.5 Conclusions

Three applications were successfully built on the prototype implementation of
the presented framework. Each application utilizes several services provided
by the JSPAF framework.

The ease of adding new analyses was demonstrated by creating an applica-
tion that performs liveness analysis. Integrating the framework with a lexer
generator and a parser generator was possible, and provided successfully a
front end for a new input language. The basic block analysis and represen-
tation show the flexibility of the framework by generating a new view to the

program representation.

The work done by Tukkinen was also a successful test of the implemented

framework.

a0

Chapter 6

Conclusions

Static program analysis tools are capable of evaluating programs with all pos-
sible inputs and all possible execution flows. This thesis presented a frame-
work, that facilitates creating static program analysis tools. This chapter
discusses the results of this thesis and speculates on possible future work on

the subject.

6.1 Results

The framework is modular and contains well-defined interfaces. Therefore, it
is easy to add support for new analyses, target architectures, inputs that read
the program, and outputs that show the results of the analysis. Modularity

also facilitates fast prototyping with naive code that can later be reworked.

The framework provides a program representation that is based on control
flow graphs. The representation is suitable to be used in most common static
analyses [8, 18, 28, 15, 17, 46].

The wnput interface of the framework can be used to construct the program

representation in bottom-up [51] or top-down |28] fashion.

ol

CHAPTER 6. CONCLUSIONS

The framework provides an analysis interface that enables describing the
analyses in the common Java programming language instead of some propri-

etary analysis language.

The interface for the actual analyses is very general and supports creation of
different analyses. However, it does not provide a ready solution to how the
analysis should be internally implemented and how different analyses should

communicate with each other.

A weakness of the framework is that it analyzes a single program as a whole.
In order to better support dynamically loaded libraries, operating system
code and intertask analysis, it should be possible to analyze only parts of the
program code. It would also be useful, if one could specify by hand, which

parts of a large program need be analyzed.

The practical experience gained from constructing the applications shows,
that the prototype framework is useful when constructing static program

analysis tools.

A static program analyzer constructed with the prototype framework does
not need to be a stand-alone program. It can also be integrated with another
Java program. This way it is easier to add program analysis features to a
tool than by interfacing the tool with an external static program analyzer or
an analyzer generator. Also, the other tool can easier provide the analyzer

with important information about the program that is being analyzed.

6.2 Future Work

The presented approach of supporting construction of static program ana-
lyzers in a general purpose programming language could be further evalu-
ated. The approach could be compared to other approaches that either use
a proprietary programming language (e.g., PAG [34]) or a formal description

language (e.g., [7, 50]).

92

CHAPTER 6. CONCLUSIONS

Also, the presented framework and prototype implementation have potential
for further development. The framework could be extended with interfaces
for specific analyses. For example, to better support execution time analysis,

interfaces for a timing model and path analysis could be defined.

One useful application of the framework would be to integrate a static pro-
gram analyzer built on the framework with an integrated development envi-
ronment (IDE). A developer who edits the source code of a program in an
IDE could be presented information that was discovered by static analysis of

the program.

Current performance evaluation tools have mostly concentrated on calculat-
ing worst and best case execution times of programs. A performance criterion
that is significant in mobile embedded systems is power consumption of the
system. The execution of the program affects power consumption of the sys-

tem, and can be analyzed with methods of static program analysis [27, 30].

This thesis has considered creating static program analysis tools that are
biased towards performance evaluation. However, the framework could be
applied to other purposes, too. For example, the focus of the framework could
evolve from performance evaluation into validating, model checking, type

checking, partial evaluation, compiling, analyzer generation, and simulation.

a3

Bibliography

[1]

2]

3]

4]

[5]

[6]

AbsInt Angewandte Informatik GmbH. aiT: Worst-case execu-
tion time analyzers. = Web page. Referenced in November 2003.
http://www.absint.com/ait/.

ACES Software, IRISA. Heptane (Hades Embedded Processor
Timing ANalyzEr) static WCET analyzer. Web page. Referenced
in November 2003. http://www.irisa.fr/aces/work/heptane-demo/
heptane.html.

Alfred V. Aho, Ravi Sethi, and Jeffrey. D. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, Reading, MA, 1986.

Jan Gustafsson Andreas Ermedahl. Realtidsindustrins syn pa verktyg
for exekveringstidsanalys. Technical Report 97/06, ASTEC (Advanced
Software TEChnology), Box 337, SE-751 05 Uppsala, SWEDEN, 1997.

Andrew W. Appel. Modern compiler implementation in Java. Press Syn-
dicate of the University of Cambridge, The Pitt Building, Trumpington
Street, Cambridge CB2 1RP, United Kingdom, 1998.

AT&T Labs Research. Graphviz - open source graph drawing soft-
ware. Web page. Referenced in November 2003. http://www.research.
att.com/sw/tools/graphviz/.

o4

BIBLIOGRAPHY

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

Elliot Joel Berk and C. Scott Ananian. Jlex: A lexical analyzer
generator for Java(TM). Web page. Referenced in August 2003.
http://www.cs.princeton.edu/~appel/modern/java/JLex/.

Johann Blieberger. Data-flow frameworks for worst-case execution time
analysis. Real-Time Systems, 22(3):183-227, May 2002.

Per Cederberg. Grammatica: Cf and Java parser generator. Web page.

Referenced in November 2003. http://www.nongnu.org/grammatica/.

Jean-Frangois Collard and Jens Knoop. A comparative study of reaching
definitions analyses. Technical report, PRiSM, University of Versailles,
1998.

Antoine Colin and Isabelle Puaut. A modular and retargetable frame-
work for tree-based wcet analysis. In Proc of the 13th Euromicro Con-
ference on Real-Time Systems, Delft, The Netherlands, June 2001.

Patrick Cousot. Abstract interpretation based formal methods and fu-
ture challenges, invited paper. In R. Wilhelm, editor, Informatics — 10
Years Back, 10 Years Ahead, volume 2000 of Lecture Notes in Computer
Science, pages 138-156. Springer-Verlag, 2001.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In Conference Record of the Fourth An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 238-252, Los Angeles, California, 1977. ACM
Press, New York, NY.

Jakob Engblom. Static properties of commercial embedded real-time
programs, and their implication for worst-case execution time analysis.
In Proc. Fifth IEEFE Real-Time Technology and Applications Symposium,
June 1999.

%)

BIBLIOGRAPHY

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Jakob Engblom. Processor Pipelines and Static Worst-Case Execution
Time Analysis. PhD thesis, Uppsala University, April 2002.

Jakob Engblom and Andreas Ermedahl. Modeling complex flows for
worst-case execution time analysis. In Proc. 21th IEEFE Real-Time Sys-
tems Symposium (RTSS’00), November 2000.

Andreas Ermedahl. A Modular Tool Architecture for Worst-Case Ezecu-
tion Time Analysis. PhD thesis, Institutionen for informationsteknologi,
June 2003.

Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian
Martin, Michael Schmidt, Henrik Theiling, Stephan Thesing, and Rhein-
hard Wilhelm. Reliable and Precise WCET Determination for a Real-
Life Processor. In Embedded Software Workshop, pages 469-485, Lake
Tahoe, USA, October 2001.

Jonathan C. Hardwick and Jay Sipelstein. Java as an intermediate lan-
guage. Technical Report CMU-CS-96-161, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA, August 1996.

John L. Hennessey and David A. Patterson. Computer Organization
and Design: The Hardware/Software Interface; 2nd edition. Morgan
Kaufmann, 1998.

A. Hergenhan and W. Rosenstiel. Static timing analysis of embedded
software on advanced processor architectures. In Proceedings of Design,
Automation and Test in Europe (DATE ’00), pages 552-559, March
2000.

Vesa Hirvisalo, Mikko Reinikainen, and Juha Tukkinen. Simple Machine
specifications. Technical Report Perf-10-GEN, Helsinki University of
Technology, Laboratory of Information Processing Science, September
2003.

26

BIBLIOGRAPHY

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

Niklas Holsti, Thomas Langbacka, and Sami Saarinen. Bound-T ex-
ecution time analyzer. Web page. Referenced in November 2003.

http://www.bound-t.com/.

Niklas Holsti and Sami Saarinen. Status of the Bound-T WCET tool.
In Proc. 2nd International Workshop on Worst-Case FExecution Time
Analysis (WCET2002), 2002.

Scott Hudson, Frank Flannery, and C. Scott Ananian. CUP
parser generator for Java. Web page. Referenced in August 2003.
http://www.cs.princeton.edu/ appel/modern/java/CUP/.

Raj Jain. The Art of Computer Systems Performance Analysis. John
Wiley & Sons, Inc., 1991.

Chandra Krintz, Ye Wen, and Rich Wolski. Predicting program power
consumption. Technical Report 2002-20, UCSB, July 2002.

Daniel Késtner and Stephan Wilhelm. Generic control flow reconstruc-
tion from assembly code. In Proceedings of the joint conference on Lan-
guages, compilers and tools for embedded systems, pages 46-55. ACM
Press, 2002.

James R. Larus and Eric Schnarr. EEL: machine-independent executable
editing. In Proceedings of the ACM SIGPLAN 1995 conference on Pro-
gramming language design and implementation, pages 291-300. ACM
Press, 1995.

Sheayun Lee, Andreas Ermedahl, Sang Lyul Min, and Naehyuck Chang.
An accurate instruction-level energy consumption model for embedded
RISC processors. In LCTES/OM, pages 1-10, 2001.

Bjorn Lisper. Fully automatic, parametric worst-case execution time
analysis. Technical Report ISSN 1404-3041 ISRN MDH-MRTC-97,/2003-
1-SE, Mailardalen Real-Time Research Centre, Milardalen University,
April 2003.

57

BIBLIOGRAPHY

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

|41]

Jane W. S. Liu. Real-Time Systems. Prentice-Hall, first edition, 2000.

Roman Manevich. Data structures and algorithms for efficient shape
analysis. Master’s thesis, Tel-Aviv University, School of Computer Sci-

ence, January 2003.

Florian Martin. PAG - the Program Analyzer Generator. Web page. Ref-
erenced in September 2003. http://rwé4.cs.uni-sb.de/“martin/pag/.

Julia Menapace, Jim Kingdon, and David MacKenzie. The “stabs” debug
format. Free Software Foundation, Inc. Contributed by Cygnus Support,
1993.

Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114-117, 1965.

Steven S. Muchnick. Advanced compiler design and implementation.
Morgan Kaufmann Publishers, 2929 Campus Drive, Suite 260, San Ma-
teo, CA 94403, USA, 1997.

Frank Mueller. Timing analysis for instruction caches. Real-Time Sys-
tems, 18(2/3):209-239, May 2000.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of

Program Analysis. Springer Verlag, 1999.

Information Society Technologies Programme of EU’s Fifth Frame-
work Programme. DAEDALUS (validation of critical software by static
analysis and abstract testing). Web page. Referenced in November 2003.
http://www.di.ens.fr/ cousot/projects/DAEDALUS/index.shtml.

William Pugh, Evan Rosser, Wayne Kelly, Bill Pugh, Dave Won-
nacott, and Tatiana Shpeisman. The omega project: Frame-
works and algorithms for the analysis and transformation of sci-
entific programs. Web page. Referenced in November 2003.
http://www.cs.umd.edu/projects/omega/.

28

BIBLIOGRAPHY

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

Peter Puschner and Christian Koza. Calculating the maximum execution
time of real-time programs. The Journal of Real-Time Systems, 1:159—
176, 1989.

Norman Ramsey and Jack W. Davidson. Machine descriptions to

build tools for embedded systems. Lecture Notes in Computer Science,
1474:176-192, 1998.

Thomas Reps, Mooly Sagiv, and Susan Horwitz. Interprocedural
dataflow analysis via graph reachability. Technical Report 94/14, Uni-
versity of Copenhagen, 1994.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric
shape analysis via 3-valued logic. ACM Trans. Program. Lang. Syst.,
24(3):217-298, 2002.

Jorn Schneider and Christian Ferdinand. Pipeline behavior prediction
for superscalar processors by abstract interpretation. In Workshop on
Languages, Compilers, and Tools for Embedded Systems, pages 3544,
1999.

Maria Segui-Gomez. Driver airbag effectiveness by severity of the crash.
American Journal of Public Health, 9:1575-1581, October 2000.

Alan Jay Smith. Cache memories. ACM Computing Surveys, 14(3):473—
530, 1982.

Sun Microsystems, Inc. Java 2 Platform, Standard Edition. Web page.
Referenced in November 2003. http://java.sun.com/j2se/.

Sun Microsystems, Inc. Java Compiler Compiler (JavaCC) - the
Java parser generator. Web page. Referenced in November 2003.

http://javacc.dev.java.net/.

Henrik Theiling. Extracting Safe and Precise Control Flow from Bi-

naries. In Proceedings of the 7th Conference on Real-Time Computing

29

BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[56]

[57]

Systems and Applications, pages 23-30, Cheju-do, South Korea, Decem-
ber 2000.

Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and
precise WCET prediction by separated cache and path analyses. Real-
Time Systems, 18(2/3):157-179, 2000.

Juha Tukkinen. Static timing analysis for the pipelines of embedded pro-
cessors. Master’s thesis, Laboratory of Information Processing Science,

Helsinki University of Technology, December 2003.

Randall T. White, Frank Mueller, Christopher A. Healy, David B. Whal-
ley, and Marion G. Harmon. Timing analysis for data caches and set-
associative caches. In Proc. of the IEEE Real-Time Technology and
Applications Symposium, pages 192—-202, Montreal, Canada, June 1997.

William A. Wulf and Sally A. McKee. Hitting the memory wall: Impli-
cations of the obvious. Computer Architecture News, 23(1):20-24, 1995.

Sharad Malik Yau-Tsun Steven Li and Andrew Wolfe. Cin-
derella 3.0 home page. Web page. Referenced in November 2003.
http://www.ee.princeton.edu/"yauli/cinderella-3.0/.

Kwangkeun Yi and Luddy Harrison. Z1: A data flow analyzer generator.

60

